数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这就要用到时间、空间复杂度分析了
为什么需要复杂度分析?
在代码写完后,我们把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?
这种评估执行效率的方法是没有问题的,但是这种【事后统计法】具有很大的局限性。
测试结果非常依赖测试环境。
测试环境中硬件的不同会对测试结果有很大的影响。你在 i9 主机处理器上跑的代码和在树莓派上跑的代码,绝大部分结果应该都是前者更快。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等换到另一台机器上时,可能会有截然相反的结果。
测试结果受数据规模的影响很大
对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要更快!
所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法,这就是时间、空间复杂度分析。
大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?这里有段非常简单的代码,求 1,2,3…n 的累加和。现在来估算一下这段代码的执行时间吧
1 | int cal(int n) { |
假设每行代码执行的时间都一样,为 unit_time
。在这个假设的基础之上,第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要2n*unit_time
的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time
。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
按照这个分析思路,我们再来看这段代码。
1 | int cal(int n) { |
依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?
第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n unit_time 的执行时间,第 7、8 行代码循环执行了 n2 遍,所以需要 2n2 unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。
尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
我们可以把这个规律总结成一个公式:T(n)=O(f(n) )
T(n) 表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n2